Arthur Irving Academy Research Grants in Environmental Science


2016-2017 Research Grant Recipients

Investigation of Lichens as Spatial Indicators of Trace Metal Distribution in Nova Scotia

Dr. Nelson O’Driscoll, Canada Research Chair in Environmental Biogeochemistry,  Department of Earth & Environmental Sciences, Acadia University

Dr. John Murimboh, Department of Chemistry, Acadia University

Dr. Allison K. Walker, Department of Biology, Acadia University

Mr. Robert Cameron (lichenologist), Protected Areas Branch, Nova Scotia Department of Environment

Sara Klapstein, PhD CandidateMUN/Acadia

The objective of this research is to examine the spatial distribution of airborne metals across Nova Scotia using lichens as passive air samplers. Nova Scotia is a hotspot for mercury and other trace metal accumulation in ecosystems, a fact that has been partially attributed to long range transport of air pollution. While atmospheric inputs are critical to understanding the impact of contaminants in ecosystems, relatively little is known about regional deposition of trace metals stemming from airborne pollution. Province-wide investigation of metal deposition from the atmosphere is not feasible with current passive air sampling technologies due to the high cost and uncertainty involved. Lichens and mosses have been shown in many studies to be useful bioindicators for airborne metal concentrations. While there are limitations, the proposed techniques are well documented for use in spatial studies to identify areas of high relative average air concentrations and depositional rates of trace metals and other contaminants.

Our first year of data collection (2015-2016) has resulted in more than 300 samples of epiphytic lichens collected from sites across Nova Scotia and resulted in excellent training for an undergraduate researcher, Honours student Cardy Saunders (Biology). This work was generously supported by an Arthur Irving Academy 2016 Research Grant. These samples have been dried, homogenized and analyzed for total mercury concentration in the K.C. Irving Environmental Science Centre. Significant variation in mercury content was observed across sampling sites and GIS analysis was used to display and model these regional trends. This proposed project is a continuation of Year 1 and will make use of the currently collected samples for an additional suite of trace metal analyses (e.g. arsenic, lead, cadmium, etc.) and controlled experiments quantifying the factors affecting mercury adsorption and desorption on the lichen samples. The regional distribution patterns of each metal contaminant will be examined. These data will provide a baseline dataset that can be replicated every 5-10 years to examine changes in the spatial distribution of metal contaminants with changing climate, atmospheric chemistry, and regional pollution sources. The results can also be compared with other recently published spatial surveys of metals in Nova Scotia surface waters and fish. Results of the proposed work will fill a critical knowledge gap in our understanding of continuing pollution distribution in Nova Scotia and Atlantic North America in general. The project emphasizes student training and extensive use of the K.C. Irving Environmental Science Center.


Developing restoration strategies for native plants in Nova Scotia: Investigations of arbuscular mycorrhizal and biochar effects on propagation

Dr. Allison Walker and Dr. Juan Carlos López, Department of Biology, Acadia University

Dr. Robin Browne, K.C. Irving Environmental Science Centre and Harriet Irving Botanical Gardens

Dr Rodger Evans, Department of Biology, Acadia University

Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms found in terrestrial ecosystems, which often form mutualistic root associations with native plants in their habitats (Smith and Read, 2008). Their role in conservation is understudied, but there is increasing evidence to suggest that AMF enhance native plant persistence in their habitats due to enhanced nutrient availability and increased resistance to abiotic / biotic factors (Smith and Smith, 2012). The proposed study investigates native plant – fungal association, to develop best practices for restoration of vulnerable species, or those of special interest for habitat stabilization. AMF colonization will be investigated for the potential effect on native plants propagated from the seed bank at the K.C. Irving Environmental Science Centre and Harriet Irving Botanical Gardens. Six native plant species considered at risk or of special interest in the Acadian Forest Region have been selected as potential candidates for the study. These species originate from differing habitats, in order to determine a range of possible native mycorrhizal compositions and relative effectiveness of inoculants for improving out-­‐planting success. In addition, the effects of biochar are to be investigated for potential benefit, possibly through enhancement of mycorrhizal colonization. This novel application of biochar holds promise as a means of improved establishment of native plants for habitat restoration (Glaser et al., 2014). Notably, the objectives of this project are in compliance with the revised 2011-­‐2020 Global Strategy for Plant Conservation Objective 2, Target 8, which seeks to have at least 75% of threatened native plant species in ex situ collections, with at least 20 % available for recovery and restoration programs. The work builds directly on successful Honours thesis work supported by a previous Arthur Irving Academy Foundation Research Grant completed by Irving Scholar Sadie Moland, and with new AMF work in progress by Honours students and Irving Scholars Tyler D’Entremont and Sarah Fancy.



2015-2016 Research Grant Recipients

A multi-faceted approach to understanding the biology of a critically imperiled, Nova Scotia native plant Crocanthemum canadense.

Dr. Rodger Evans & Dr. Kirk Hillier, Department of Biology

Canadian frostweed,Crocanthemum canadense, is a critically endangered native plant growing within Nova Scotia’s sand barren ecosystem. In an effort to examine the factors which impact the fitness of C. canadense populations in Nova Scotia, we raised plants from seeds collected in the wild to experimentally examine reproductive biology of, and effects of insect predation on, C. canadense. Some of the experimental plants are from seeds that arose through insect-mediated cross pollination of open flowers, while others are from seeds that arose from self-pollination in flowers that never open. Knowing the pedigree of the plants allows for comparative measures of genetic variation and plant fitness that can be related back to wild populations. We will also be studying the interactions between the plants and two insect predators. Larvae of Mompha capella eat flower parts before the flowers can open, thus affecting the output of insect pollinated flowers, whereas an as yet undetermined, “seed eating bug” preys upon the seeds of open fruits, and may be damaging the seeds to the point where they don’t germinate. This multifaceted approach will help us better understand the mechanisms this rare plant uses to survive in the harsh environment of Nova Scotia’s sand barrens.


Development of a mobile web app from the recently published e-flora, Nova Scotia Plants.

Dr. Darcy Benoit, Jodrey School of Computer Science

Ruth Newell, E.C. Smith Herbarium  

One of the key issues with research is the ability to reference the appropriate research material quickly. In 2014, an electronic book titled “Nova Scotia Plants” was published by Munro, Newell, & Hill. This seven year project was supported by the K.C. Irving Environmental Science Centre at Acadia University and the Nova Scotia Museum. Nova Scotia Plants is an indispensable botanical resource for researchers and students while working with Nova Scotia’s wild flora. Given the size and format of this e-book however, it is not easily accessed via mobile devices. The goal of this project is to make the Nova Scotia Plants e-flora available on mobile devices, allowing both researchers and naturalists easy access to the definitive guide to the flora of the Acadian Forest region. This project will take the existing data from current sources, format the data and insert it into a database, and then use that database to create a mobile web app that allows easy navigation and searching for flora information. Students will be engaged with the development process and with field testing.


Bioaccumulation of Mercury in Lichens and Mushrooms of Nova Scotia

Dr. Allison Walker, Department of Biology

Dr. Nelson O’Driscoll, Department of Earth and Environmental Sciences
Canada Research Chair in Environmental Biogeochemistry

Lichens and mushrooms serve as an important food resource for vertebrate and invertebrate animals in the Acadian forest. Lichens and mushrooms can also bioaccumulate mercury and therefore may be an important mechanism for pollution in terrestrial food webs. Wild mushrooms and lichens from a broad range of sites in Nova Scotia’s Acadian forest will be collected and analyzed for total mercury and methyl mercury. Results of this research will fill a critical gap in our understanding of terrestrial food web dynamics and mercury accumulation in the Acadian forest region of Nova Scotia by studying an often overlooked component of forest biodiversity, lichens and mushrooms. This work will also provide valuable interdisciplinary training for undergraduates in biological and environmental research.


2014-2015 Research Grant Recipients

Sand, Mud and Habitat Engineers: Use of Mesocosms to Study Animal-Sediment Interactions in the Minas Basin

Dr. Glenys Gibson, Department of Biology

The objective of this research is to focus on the interactions between the small invertebrates that live in the nearby Minas Basin’s tidal flats and sediment that is suspended in its waters. The researchers will use the mesocosms at the K.C. Irving Environmental Science Centre to test the effects of suspended sediment on assemblages of marine invertebrates that are typical of sandy or muddy tidal flats in the Minas Basin. These invertebrates are a major source of food for fish and birds, and the potential impact of local water management strategies on them makes the research critically important. The work will also provide valuable training for undergraduates in environmental research focused on the interface between animal-habitat interactions.


Seed and Tissue Bank Research for Native Wetland Plants of the Acadian Forest Region: Strategies to Support the Protection and Restoration of Wetlands

Dr. Rodger Evans, Ruth Newell and Dr. Robin Browne, Department of Biology

Researchers at the K.C. Irving Environmental Science Centre and Acadia University are seeking to make significant contributions toward the conservation of wetland plant species and habitat through the development of seed and tissue bank research programs. The wetland project will involve testing different seed treatments to ensure effective, long-term storage capabilities, as well as developing tissue culture propagation methods to support the production of appropriate numbers and types of planting materials for various conservation and reclamation projects in the Acadian Forest region. Results from these trials will be invaluable for establishing protocols for ongoing conservation activity at the K.C. Irving Environmental Science Centre and will help direct conservation priorities in the Atlantic region. Funding from the Arthur Irving Academy will also support undergraduate research and training opportunities at Acadia University.


Coastal Mycoremediation Pilot Project

Dr. Allison Walker, Department of Biology

Dr. Allison Walker’s mycology lab will conduct a pilot study to determine fungal strains appropriate for hydrocarbon remediation in marine environments, using a tidal mesocosm bench in the K.C. Irving Environmental Science Centre. Native marine fungi will be isolated from intertidal plants, such as saltmarsh and algae, as well as driftwood and intertidal plant detritus. The goal is to identify new fungal species using morphological and molecular techniques and evaluate their effects on oil degradation in marine ecosystems under different environmental conditions. The results of this work could have far-reaching implications for understanding the role of fungi in the breakdown of environmental contaminants in marine ecosystems.